
MIDI Router

Ηπ INSTRUMENTS

Aaron Andrew Hunt

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

Changes from Previous Documentation 3
Current Version, v2 — 15. February 2021 3 ..

Previous Versions 3 ..

Introduction 4
Bug Reporting & Feedback 4 ...

Feature Requests 4 ..

1. MIDI Routing 5
Input Sources & Output Destinations 5 ..

MIDI Ports 5 ...

Virtual MIDI Ports 5 ..

IAC Bus 5 ...

Adding a MIDI Route 6 ...

Deleting a MIDI Route 6 ...

2. Transformations 7
Filters 7 ..

Channels 7 ...

Notes & Velocities 7 ...

Continuous Controllers 8 ...

Scripts 8 ..

3. Message Monitor 9
Appearance 9 ...

Clear, Delete, & Copy 9 ...

Speed of MIDI Traffic 10 ..

4. Scripts 11
Scripting Language 11 ..

Opening the Script Editor 11 ..

Interface Basics 12 ..

About Bytes and Channels 12 ..

Managing Scripts 12 ...

Selecting Input Conditions 12 ...

Status-byte Input Options 13 ..

Data-byte Input Options 13 ..

1

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

Altering or Filtering the Input Event 14 ..

Storing Input Events 14 ...

Creating New Output Events 14 ..

Getting Event Times 14 ...

Creating Time-Delayed Output Events 15 ..

System Exclusive Events 15 ...

Creating New System Exclusive Events 15 ...

Testing System Exclusive Events 15 ...

Storing & Recalling Values 16 ...

Storing & Recalling Arrays 16 ...

Checking Syntax & Testing Scripts 17 ...

Live MIDI Testing 17 ...

5. Files 18
Auto store unsaved projects internally 18 ...

Restore external projects at next session 18 ...

Prompt to handle each open project 18 ..

Discarding a Project 18 ...

Credits 19

2

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

Changes from Previous Documentation
Here are lists of changes for each version of this documentation.

Current Version, v2 — 15. February 2021
• Chapter 4: added and / or reworked sections concerning Creating New System Exclusive

Events,Testing System Exclusive Events and Live MIDI Testing.

Previous Versions
v1 — 22. January 2021
• Initial Release

Please report typos or problems with this text via email to hpiinstruments@zentral.zone

3

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

Introduction
MIDI Router MIDI Router for macOS is a utility for routing MIDI communications and
monitoring MIDI traffic on your Mac. MIDI data can be transformed between inputs and
outputs for practical tasks like reassigning devices to specific MIDI channels, altering note
velocities, filtering messages, etc. You can also write scripts which not only alter data but
also create new MIDI events, to do anything from converting CC to sysex, to building your own
interactive sequencers, auto-accompaniment engines, and even games. A monitor window lets
you check up on the data being sent between inputs and outputs, (very useful in
troubleshooting situations) as well as custom messages from your scripts. An optional menu
item is added to the macOS system menubar, so you can leave the app running in the
background and check in easily no matter what else you might be doing.

Bug Reporting & Feedback
Please report any problems you may experience with MIDI Router directly by using the menu
item Report a Bug. Before doing so, please also check the MIDI Router reports webpage,
which lists all known issues and feature requests. Feedback which is not about bugs may be
sent by email directly or using the menu item Send an Email.

Feature Requests
If the software does not do something you would like it to do, and you are willing to pay for
the feature you want, use the menu item Request a Feature to describe the feature and
make an initial offer to pay for it. A professional wage for programming is not expected. 20 €
is an acceptable starting point (adding any feature requires several hours of work). If your
idea makes sense and your offer is reasonable, then a payment schedule is agreed upon and a
testing stage begins. Once testing is done and the feature is verified as working, a new
version of the software is released including the new feature(s).

Please report bugs as described, and support will proceed via email to resolve the issue.

Not all features are possible or will be considered relevant for the majority
of users. A minimum offer of 20 € is standard for all Feature Requests.

4

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

1. MIDI Routing
The most basic function of MIDI Router is to connect MIDI devices, both real (existing as
hardware) and virtual (existing only in software), so that messages sent from any input source
will arrive at any desired output destination.

Input Sources & Output Destinations
A MIDI Source is also called an Input, referring to something which generates MIDI messages. A
MIDI Destination is also called an Output, referring to something which receives MIDI
messages. Routing MIDI messages simply consists of connecting an Input Source with an Output
Destination, to send data from point A to point B.

MIDI Ports
A MIDI Port can be either an input or an output. Each port supports 16 MIDI channels.

Virtual MIDI Ports
MacOS allows applications to create their own Virtual MIDI Ports which behave the same as a
hardware MIDI port.

IAC Bus
MacOS allows you to create your own Virtual MIDI Ports using the utility Audio MIDI Setup.
Your Mac should already have at least one IAC Bus created, but you can create more than one.
To do so, follow these steps:

1. Open Audio MIDI Setup from the Utilities folder.
2. Select the menu item Window ! MIDI Studio.
3. Double-click the IAC Driver icon.
4. Check “Device is online”.

You may also rename the virtual ports you create using the IAC driver.

5

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

Adding a MIDI Route
Click the “plus” (+) button above the left list to add a new MIDI Route. Then click the grey
disclosure triangle next to “Select Source” to select an Input Source from the popup menu.
Click the triangle next to “Select Destination” to select an Output Destination from the popup
menu. If the menus are not populated, there are no ports available (see above to create your
own virtual ports).

Deleting a MIDI Route
To remove an exiting MIDI Route, simply select it in the list and either press the delete key on
the computer keyboard, or click the “minus” (-) button above the MIDI Routes list.

6

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

2. Transformations
You may want to transform MIDI data sent from a given Source so that it arrives in some
desired form (or is prohibited from arriving) at a Destination. Basic transformation are listed
below, and many more complex options are available using a Script (Chapter 4).

Filters
The Filter option lets you prohibit certain messages from arriving at the connected
Destination. Filtering is available for the following messages: Continuous Controllers (per
controller number), Patch Changes (all), Pitch Bend (all), System Common messages (all,
including System Exclusive), and System Realtime messages (all).

Channels
Source events sent from any channel can be forced to output on a desired channel. This is
especially useful for MIDI controllers which do not allow their sending or receiving channels to
be changed in hardware.

Notes & Velocities
Notes can be transposed by any value up to five octaves up (select a positive value) or down
(select a negative value). Note velocities can be transformed in the following ways.

Transformation Resulting Velocity at the Destination

Fixed Constant Value

Add Higher Values

Subtract Lower Values

Scale Higher (> 100%) or Lower (< 100%) Values

7

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

Continuous Controllers
Controller data values may be either filtered completely or transformed in the ways outlined
above for Note Velocities.

Scripts
The above options should be adequate for most use cases, but if your needs are more involved
or you want to be more creative, you can write your own transformations, including creation
of new MIDI events, using Scripts (Chapter 4).

8

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

3. Message Monitor
Check a checkbox next to a Source or Destination in your MIDI Routes list to see the MIDI data
being passed or transformed between the selected Sources and Destinations.

Appearance
All simple MIDI messages will appear in the list as a status byte followed by two data bytes. In
the case of messages which have only two bytes, a third byte may be shown if added in
software. Sysex messages are shown as a block of hex data.

Clear, Delete, & Copy
In addition to clearing the list, you may select messages in the list and type delete on the
keyboard to remove them. You may also copy messages from the list using the menu item Edit
! Copy or the keyboard shortcut Command - C, to paste into a text editor, which can be
useful for troubleshooting.

9

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

Speed of MIDI Traffic
The monitor window is intended for checking connections, getting feedback from scripts, and
general MIDI troubleshooting. The message list is populated using a timer in order not to
cripple the performance of MIDI Router while the monitor window is open, but opening the
message list may still slow down MIDI traffic, so it should not be left open during normal use.

Use the Message Monitor for verification and troubleshooting. It is not recommended
to leave this window open during normal use, as it may slow down MIDI traffic.

10

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

4. Scripts
MIDI Router lets you manipulate incoming MIDI data at the byte level (including System
Exclusive events) and produce new MIDI messages using a powerful Script Editor. Familiarity
with programming concepts and the MIDI 1.0 specification are helpful.

Scripting Language
The core of the scripting language is called XojoScript, belonging to the programming tool
used to create this software, a development environment called Xojo. At the time of writing
this documentation, a users guide of the scripting language is available online at https://
docs.xojo.com/UserGuide:XojoScript_Language A language reference menu is also available
within the Script Window by right-clicking in the code area. Several example scripts are also
included, with commented code to get you started.

Opening the Script Editor
The script window can be opened from the System menu icon under Script Editor, from the
application menu under Window ! Script Editor, or from the Transformations list of a project
by clicking on an item ! and choosing Scripts ! Open Script Editor.

11

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

Interface Basics
The script window includes a list at left for managing scripts, controls at the top for selecting
input conditions which will trigger your script, a field at the upper right for typing in your
code, and a smaller field below that for typing in an optional description. A list for Debugger
output provides information on scripting errors when you click Check Syntax, and displays
both pseudo- input and output data when you click Test. Clicking the Cancel button will close
the window and discard all the changes you have made. Clicking OK will save all changes.
Byte values can be displayed either in hexadecimal (hex) or in decimal (dec), as needed.

About Bytes and Channels
MIDI byte values range from 0-127 for data bytes, and 128-255 for status bytes. Although it is
common to refer to MIDI channels as 1 through 16, within your script any methods using the
keyword Channel are zero-based, so the first channel is always channel 0, not channel 1.

Managing Scripts
The list at left titled Scripts lets you add, remove, rename, and duplicate your scripts. Click
the plus button (+) to add a new script. Click minus (-) or type Delete to remove a script.
Double-Click a script to rename it. To duplicate a script, Right-Click or Control-Click a script
and select Duplicate from the popup menu. Script names must be unique. Scripts are stored
as text files and are stored internally in the following location:

/Users/UserName/Library/Application Support/MIDIRouter/XML/

If you purchased MIDI Router from the Mac App Store, the above location exists inside your /
Users/Username/Containers directory.

Selecting Input Conditions
The controls and menus at the top of the script window correspond to three bytes of an input
Event: status, data1, and data2.

Clicking each small triangle ! will open a popup menu showing various value-matching
options. A description of the currently selected status value is shown below the status slider.
When the status is set to a Controller Change byte, a controller description of the data1
value also appears. When the status is set to match sysex, then the bytes data1 and data2
correspond to the second and third bytes of an incoming sysex message. For example, the
following settings match the first three bytes in hex of a sysex sent by a Roland keyboard.

12

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

Status-byte Input Options
When a new script is added to the list, its status condition defaults to respond to all incoming
Note messages. Click the triangle ! to assign a different status condition.

Note that is possible to match the System Exclusive status byte in several different ways:

1. On specific status ! System Exclusive
2. On status type ! System Common
3. On any status
4. On System Exclusive

Above, options 1 and 4 are the same, meaning your script will execute only when a sysex
message is received. The dedicated menu item at 4 is simply a shortcut. Options 2 and 3
mean your script will respond to either the group of System Common messages which
includes System Exclusive, or to all messages, which also includes System Exclusive.

Data-byte Input Options
It is possible to match each data byte as: any value, in range, and one value.

13

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

If you set the status condition to match a Controller Change byte, the menu under one value
will populate with a list of controller names. Selecting the in range option begins a two-step
process to select the range:

1. move the slider to a lowest value, then click [select lowest value]
2. move the slider to a highest value, then click [select highest value]

After you have selected lowest and highest values, moving the slider sends only values within
that range. If you select the one value option, the slider will be locked to a single value.

Altering or Filtering the Input Event
Your script is executed once per input Event, based on the status and data byte conditions
you choose. An input Event is either a simple 3-byte MIDI message or a complete block of
sysex (System Exclusive) bytes. You can alter a 3-byte input Event within your script by
assigning new values to status, data1, or data2, and those new values will be passed to the
Destination unless you suppress the input Event using FilterInput. The content of an incoming
sysex block can also be altered using SetSysexByte(index, byte) and SetSysexBytes(index,
bytes()), or filtered using FilterInput. See further details under System Exclusive Events
below.

Storing Input Events
Input events can be stored from one iteration of the script to the next using StoreEvent,
useful for matching input patterns consisting of multiple events. The events are stored in a
simple array. To get the size of the array, call StoredEventSize. Look up the properties of
stored events using StoredEventTime(index), StoredEventStatus(index),
StoredEventData1(index), and StoredEventData2(index). A convenience method
StoredEventChannel(index) is also available. The array can be emptied at any time using
InitStoredEvents.

Creating New Output Events
Any number of new output Events can be produced using NewEvent(statusByte, dataByte1,
dataByte2), and new sysex blocks can be sent using NewSysex(bytes()). Note that the data
type for the array sent to NewSysex must be bytes() and not integers(), or the debugger will
throw an error. The new events are sent immediately to output when the script executes.

Getting Event Times
At any time you can call the function System.microseconds to get a Double value for the
current time. The Simple Sequencer example script shows how this can be used to calculate
the on and off times of incoming note messages.

14

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

Creating Time-Delayed Output Events
New Events can also be sent with a time delay in milliseconds, using
NewDelayedEvent(msDelay, statusByte, dataByte1, dataByte2). A convenience method is
included for handling both the On and Off event of new delayed notes using
NewDelayedNote(msDelay, msDuration, channel, note, velocity). Passing zero for the
msDelay parameter will cause the event to be sent out immediately. In the case of
NewDelayedNote the note will turn itself off after the specified msDuration. Note that these
times are in milliseconds, so when using System.microseconds you will need to convert
values accordingly.

System Exclusive Events
A sysex event consists of a block of bytes of any size beginning with F0 (240) and ending with
F7 (247), with only data bytes having values 00-7F (0-127) in between. To get the size of the
block, use GetSysexSize. The number returned is the total number of bytes in the block,
including the start and end bytes. To look up byte values anywhere in the block, use
GetSysexByte(index) or GetSysexBytes(index, size). The first byte is numbered zero (0).
You can alter byte values using SetSysexByte(index, byte) or SetSysexBytes(index,
bytes()). Unless you call FilterInput, the block will be sent to output.

Creating New System Exclusive Events
There are two ways to create a new sysex block. You can either create an array of bytes using
data type Byte or UInt8 and then call NewSysex(bytes()), or you can pass a string of bytes
as a string using NewSysex(“F0 F7”) where your data bytes are listed between F0 and F7.
Examples of both methods are given in the Script window. New blocks will be sent
immediately when the script executes. Keep in mind that no error checking is done on sysex
blocks you create; you are solely responsible for their structure. Likewise, if you alter the
structure of an incoming sysex message, you need to make sure its byte structure remains
valid.

Testing System Exclusive Events
If your script is listening for sysex events, you can define a test sysex message to send to your
script. First click Test at the bottom of the window, then Right-Click the SEND SYSEX button
which will appear at the top left of the window, and select an option from the popup menu.

15

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

A window will appear in which you can type in a list of bytes. Use the asterisk character (*)
to designate any data bytes which should be randomly generated. In this case your sysex
message is checked for validity, so that the start and end bytes are sure to be correct and all
bytes in between are values between 0 and 127. The list of bytes you enter will then be sent
to your script when you click SEND SYSEX during testing.

Storing & Recalling Values
Local variables you create in your script are only in scope during a single execution of your
script, but you can also store values from one iteration of your script to the next using special
functions for that purpose. Since MIDI is based on bytes, usually you will be working with
bytes, but in modern programming, integers are the default data type, so the default type for
storing and recalling is an integer. Integers handle many more values than bytes, including
negative values, which are often used as flags when programming, so in most cases they are
more useful than working only in bytes. The keyword Store(“Name”, myInteger) stores an
integer value, where “Name” is any arbitrary string you want to assign, and myInteger has
been created as an integer using the var keyword. Other data types work the same way, with
methods named for each datatype. To recall a stored property, use the keyword
Recall(“Name”) along with the data type if it is not an integer.

Store(“Name”, myInteger)
StoreDouble(“Name”, myDouble)
StoreBoolean(“Name”, myBoolean)
StoreString(“Name”, myString)

var myInteger as Integer = Recall(“Name”)
var myDouble as Double = RecallDouble(“Name”)
var myBoolean as Boolean = RecallBoolean(“Name”)
var myString as String = RecallString(“Name”)

The example scripts follow a stored value naming convention, where the “Name” property is
the same as the locally named variable (or the same but with spaces added). This is just a
logical convenience; the local name and the stored name do not in fact have to match.

Storing & Recalling Arrays
To work with data lists from one script iteration to the next, the script language includes
similar store/recall methods as those explained above for arrays. Unlike single values, arrays
are internally stored as real one-dimensional arrays of the data type specified, so unique
methods are required both to store and to recall the arrays. The store and recall methods are
as follows.

StoreArray(“ArrayName”, myIntegerArray())

16

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

StoreDoubleArray(“ArrayName”, myDoubleArray())
StoreBooleanArray(“ArrayName”, myBooleanArray())
StoreStringArray(“ArrayName”, myStringArray())

var myIntegerArray() as Integer = RecallArray(“ArrayName”)
var myDoubleArray() as Double = RecallDoubleArray(“ArrayName”)
var myBooleanArray() as Boolean = RecallBooleanArray(“ArrayName”)
var myStringArray() as String = RecallStringArray(“ArrayName”)

Checking Syntax & Testing Scripts
Click Check Syntax to compile your script and output any error messages to the Debugger.
Problems in your code will be marked with line and character numbers, with red dots placed
at the left of your code by the line number, showing you exactly where errors exist in your
code. When you click the Test button, it will read TESTING.

While testing, you can move sliders or click the status button to send pseudo-messages to
your script input to verify that your script is working as intended. Note that actual MIDI data
is not involved when testing. To end testing, click the TESTING button again.

Some errors will not appear in the debugger and will only appear at runtime when the code is
actually executing. Beware that in some cases code that you have written containing a bug
such as an infinite loop may cause MIDI Router to crash. Your script is however never fatal for
the application itself, only perhaps for a given session.

Live MIDI Testing
To test your script in real time with actual MIDI input and output, assign the script to a MIDI
route in a project window and then edit the script. Changes you make to your script code are
updated in real time as you type, so if you are working on a live MIDI route, you can test with
real live MIDI input as you go. On the other hand, because live input can sometimes produce
unexpected results when your code is incomplete (possibly resulting in a crash), you will want
to make sure MIDI input is not being sent to the script while you are editing it.

17

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

5. Files
In the Preferences Window you will find a list of options for the behaviour of MIDI Router
when you quit the application.

Auto store unsaved projects internally
Check this option if you would like open projects that have not been saved to be stored
automatically when you quit MIDI Router. You can then work in MIDI Router without having to
manage external project files at all, which may be more convenient in some cases. The
project files will instead be stored in the following location:

/Users/UserName/Library/Application Support/MIDIRouter/Sessions/

If you purchased MIDI Router from the Mac App Store, the above location exists inside your /
Users/Username/Containers directory. Note that project files which have been opened as
external files will not be stored internally, but rather will be stored at the location of the
external file.

Restore external projects at next session
Check this option if you would like all open projects to be reloaded automatically the next
time you open MIDI Router. MIDI Router will then store the paths to open projects in a file
called projectpaths.xml in the directory listed above. When using this option, be aware that
if you move your project files around after quitting MIDI Router, the paths will no longer
match and the moved files will not be opened when you reboot MIDI Router.

Prompt to handle each open project
Check this option if you want to use the above automatic project saving and loading options,
but also want to have control over exactly what will happen to each project when you quit
MIDI Router. A dialog will then appear for each window asking you what you want to do with
that project. This is the default behaviour.

Discarding a Project
When using the automatic options described above, MIDI Router gives you options to save
projects internally or externally. If you want to discard the file, select Options, and select
Discard, or choose Save Externally, cancel that operation, and then close the window.

18

Ηπ INSTRUMENTS hpi.zentral.zone · MIDI Router · documentation v2 15.Feb.2021

Credits
All versions of MIDI Router are designed and programmed by Aaron Andrew Hunt, using Xojo
and MBS Plugins on a Mac.

This documentation is written by Aaron Andrew Hunt.

Thank you for supporting H-Pi Instruments and MIDI Router.

©2021 H-Pi Instruments · FOR THE FUTURE OF MUSIC

19

